> Cours moderne

Cours moderne

La topologie algébrique cherche à associer à une variété, ou plus généralement à un espace topologique $X$, un objet algébrique $G(X)$ — typiquement un groupe ou une collection de groupes — qui décrit (en partie) la « forme » de $X$.

On demande en outre que cette association soit naturelle dans le sens que si $f : X \to Y$ est une application continue, on peut construire un homomorphisme $f_*: G(X) \to G(Y)$ compatible avec les opérations de compositions. En particulier, $G(X)$ est un invariant topologique : si $X$ et $Y$ sont deux espaces topologiques homéomorphes, alors les groupes $G(X)$ et $G(Y)$ sont isomorphes.

On explique ici et comment, partant de l’exemple des surfaces, Riemann et Betti ont commencé par généraliser la notion d’ « ordre de connexion » d’une surface pour associer aux variétés de dimension quelconque des nombres qui en distinguent certaines. Mais ces notions sont encore vagues et difficiles à formaliser. Un saut conceptuel est réalisé par Poincaré dans son « Analysis Situs » lorsqu’il introduit la notion d’homologie. Toujours dans l’« Analysis Situs », Poincaré introduit également le groupe fondamental, dont on retrace ici la genèse. Enfin, dans le Cinquième complément à l’« Analysis Situs », Poincaré développe une théorie connue de nos jours sous le nom de théorie de Morse, qui consiste à étudier une variété en étudiant les « lignes de niveaux » d’une fonction générique. Ce « cours moderne » propose une présentation de ces trois théories :

  1. Groupe fondamental.
  2. Homologie.
  3. Théorie de Morse.

Dans l’Analysis Situs et dans le Cinquième complément, Poincaré applique ces théories à l’étude des variétés de dimension $3$, tandis que les Troisième et Quatrième compléments sont consacrés à la topologie des surfaces complexes (de dimension réelle $4$). Nous proposons donc également les cours introductifs suivants :

Enfin, Poincaré développe dans les Premier et Deuxième compléments une version « polyédrale » de l’homologie qui part du principe que les variétés considérées sont triangulées. Nous proposons ici un cours introductif à la notion d’espace PL (piecewise linear) qui contient une démonstration du fait que toute variété lisse peut être triangulée d’une manière essentiellement unique.